Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 148: 109520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513915

RESUMO

Carcinins are type-I crustins from crustaceans and play an important role in innate immune system. In this study, type-I crustins, carcininPm1 and carcininPm2, from the hemocytes of Penaeus monodon were identified. Comparison of their amino acid sequences and the phylogenetic tree revealed that they were closely related to the other crustacean carcinin proteins, but were clustered into different groups of the carcinin proteins. The full-length amino acids of carcininPm1 and carcininPm2 were 92 and 111 residues, respectively. CarcininPm1 and carcininPm2 were expressed mainly in hemocytes and intestine compared to the other tissues. The expression of carcininPm1 and carcininPm2 were dramatically increased in early time of bacterial challenged shrimp hemocytes. In contrast, the carcininPm1 and carcininPm2 were expressed in response to late state of YHV-infected shrimp hemocytes where the copy number of virus was high. The recombinant carcininPm2 (rcarcininPm2) but not its WAP domain (rcarcininPm2_WAP) exhibited antimicrobial activity against Vibrio harveyi and Vibrio parahaemolyticus AHPND but not other bacteria tested. The rcarcininPm2 was able to prolong the survival rate of VH-treated post larval shrimp from about 102 h to 156 h. These studies indicated that the carcininPm2 possessed the potential and challenges as antibacterial in innate immunity of shrimp.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Penaeidae , Vibrio parahaemolyticus , Animais , Filogenia , Sequência de Aminoácidos , Proteínas de Artrópodes
2.
Sci Rep ; 13(1): 5380, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009816

RESUMO

Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 strains are most prevalent worldwide, other serotypes are also occasionally detected. Herein, we investigated the genomes of two S. suis serotype 1 strains belonging to the clonal complex 1, which were recovered from a human patient and an asymptomatic pig, respectively. The genomes differed in pathotype, virulence-associated gene (VAG) profile, minimum core genome (MCG) typing, and antimicrobial resistance gene content. The porcine serotype 1 strain was sequence type (ST) 237 and MCG1, whereas the human serotype 1 strain was ST105 and MCG ungroupable. Both strains were susceptible to several antibiotics consisting of ß-lactams, fluoroquinolones, and chloramphenicol. Resistance to tetracycline, macrolides, and clindamycin was observed, which was attributed to the genes tet(O) and erm(B). Analysis of 99 VAG revealed Hhly3, NisK, NisR, salK/salR, srtG, virB4, and virD4 were absent in both serotype 1. However, the porcine strain lacked sadP (Streptococcal adhesin P), whereas the human strain harbored sadP1. Phylogenetic analysis revealed that human S. suis ST105 strains from Vietnam were genetically the closest to the human serotype 1 strain, whereas porcine S. suis ST11 strains from China and Thailand were genetically the closest to the porcine strain.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Humanos , Animais , Sorogrupo , Streptococcus suis/genética , Filogenia , Infecções Estreptocócicas/veterinária , Genômica , Antibacterianos/farmacologia
3.
Fish Shellfish Immunol ; 79: 18-27, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29729960

RESUMO

In shrimp, the Kazal-type serine proteinase inhibitors (KPIs) are involved in host innate immune defense system against pathogenic microorganisms. A five-Kazal-domain SPIPm2 is the most abundant KPIs in the black tiger shrimp Penaeus monodon and up-regulated in response to yellow head virus (YHV) infection. In this study, the role of SPIPm2 in YHV infection was investigated. The expression of SPIPm2 in hemocytes, gill and heart from 48-h YHV-infected shrimp was increased. The expression of SPIPm2 in hemocytes was significantly increased after 12 h of infection and gradually increased higher afterwards. Silencing of SPIPm2 by dsRNA interference resulted in the increased expression of different apoptosis-related genes, the increased expression of transcriptional factors of antimicrobial synthesis pathways, the reduction of circulating hemocytes in the shrimp hemolymph, and the increased susceptibility of the silenced shrimp to YHV infection. The activities of caspase-3 and caspase-7 in the hemocytes of SPIPm2-silenced shrimp was also increased by 5.32-fold as compared with those of the control shrimp. The results suggested that the SPIPm2 was involved in the hemocyte homeostasis.


Assuntos
Proteínas de Artrópodes/genética , Inativação Gênica , Penaeidae/genética , Penaeidae/imunologia , Roniviridae/fisiologia , Inibidores de Serinopeptidase do Tipo Kazal/genética , Animais , Proteínas de Artrópodes/metabolismo , Perfilação da Expressão Gênica , Brânquias/metabolismo , Coração/fisiologia , Hemócitos/metabolismo , Miocárdio/metabolismo , Penaeidae/virologia , Inibidores de Serinopeptidase do Tipo Kazal/metabolismo
4.
Dev Comp Immunol ; 80: 81-93, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28501515

RESUMO

Diseases have caused tremendous economic losses and become the major problem threatening the sustainable development of shrimp aquaculture. The knowledge of host defense mechanisms against invading pathogens is essential for the implementation of efficient strategies to prevent disease outbreaks. Like other invertebrates, shrimp rely on the innate immune system to defend themselves against a range of microbes by recognizing and destroying them through cellular and humoral immune responses. Detection of microbial pathogens triggers the signal transduction pathways including the NF-κB signaling, Toll and Imd pathways, resulting in the activation of genes involved in host defense responses. In this review, we update the discovery of components of the Toll and Imd pathways in shrimp and their participation in the regulation of shrimp antimicrobial peptide (AMP) synthesis. We also focus on a recent progress on the two most powerful and the best-studied shrimp humoral responses: AMPs and melanization. Shrimp AMPs are mainly cationic peptides with sequence diversity which endues them the broad range of activities against microorganisms. Melanization, regulated by the prophenoloxidase activating cascade, also plays a crucial role in killing and sequestration of invading pathogens. The progress and emerging research on mechanisms and functional characterization of components of these two indispensable humoral responses in shrimp immunity are summarized and discussed. Interestingly, the pattern recognition protein (PRP) crosstalk is evidenced between the proPO activating cascade and the AMP synthesis pathways in shrimp, which enables the innate immune system to build up efficient immune responses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Artemia/imunologia , Proteínas de Artrópodes/metabolismo , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Melaninas/metabolismo , Animais , Interações Hospedeiro-Patógeno , Humanos , Imunidade Humoral , Imunidade Inata , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
5.
Fish Shellfish Immunol ; 68: 341-348, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743625

RESUMO

The single WAP domain-containing protein (SWD) is a type III crustin antimicrobial peptide whose function is to defense the host animal against the bacterial infection by means of antimicrobial and antiproteinase activities. A study of SWD from Litopenaeus vannamei (LvSWD) is reported herein about its activities and function against bacteria, particularly the AHPND-inducing Vibrio parahaemolyticus (VPAHPND) that causes acute hepatopancreatic necrosis disease (AHPND). The LvSWD is mainly synthesized in hemocytes and up-regulated in response to VPAHPND infection. Over-expressed mature recombinant LvSWD (rLvSWD) and its WAP domain (rLvSWD-WAP) are able to strongly inhibit subtilisin but not trypsin, chymotrypsin and elastase. The rLvSWD inhibits subtilisin with the inhibition constant (Ki) of 14.3 nM. However, only rLvSWD exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria. Unlike the rLvSWD, the rLvSWD-WAP does not possess antimicrobial activity. Therefore, the killing effect of rLvSWD on VPAHPND and Bacillus megaterium was studied. The MIC of 30 µM against VPAHPND is bactericidal whereas the MIC against B. megaterium is not. With four times the MIC of rLvSWD, the VPAHPND-treated post larval shrimp are able to survive longer with 50% survival rate as long as 78 h as compared to 36 h of the infected shrimp without rLvSWD. The antimicrobial activity of LvSWD against the VPAHPND infection suggests its potential application for disease control in aquaculture.


Assuntos
Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/farmacologia , Imunidade Inata/genética , Penaeidae/imunologia , Penaeidae/microbiologia , Subtilisina/antagonistas & inibidores , Vibrio parahaemolyticus/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Sequência de Bases , Ativação Enzimática/efeitos dos fármacos , Penaeidae/genética , Subtilisina/metabolismo
6.
Fish Shellfish Immunol ; 47(1): 572-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26434714

RESUMO

In animals, infection by Gram-negative bacteria and certain viruses activates the Imd signaling pathway wherein the a NF-κB transcription factor, Relish, is a key regulatory protein for the synthesis of antimicrobial proteins. Infection by yellow head virus (YHV) activates the Imd pathway. To investigate the expression of genes involved in YHV infection and under the influence of PmRelish regulation, RNA interference and suppression subtractive hybridization (SSH) are employed. The genes in forward library expressed in shrimp after YHV infection and under the activity of PmRelish were obtained by subtracting the cDNAs from YHV-infected and PmRelish-knockdown shrimp with cDNAs from YHV-infected shrimp. Opposite subtraction gave a reverse library whereby an alternative set of genes under YHV infection and no PmRelish expression were obtained. Nucleotide sequences of 252 and 99 cDNA clones from the forward and reverse libraries, respectively, were obtained and annotated through blast search against the GenBank sequences. Genes involved in defense and homeostasis were abundant in both libraries, 31% and 23% in the forward and reverse libraries, respectively. They were predominantly antimicrobial proteins, proteinases and proteinase inhibitors. The expression of antimicrobial protein genes, ALFPm3, crustinPm1, penaeidin3 and penaeidin5 were tested under PmRelish silencing and Gram-negative bacterium Vibrio harveyi infection. Together with the results using YHV infection previously reported, the expression of penaeidin5 and also penaeidin3 but not ALFPm3 and crustinPm1 were under the regulation of PmRelish in the Imd pathway.


Assuntos
Proteínas de Artrópodes/genética , Regulação da Expressão Gênica , NF-kappa B/genética , Penaeidae/genética , Roniviridae/fisiologia , Vibrio/fisiologia , Animais , Proteínas de Artrópodes/metabolismo , NF-kappa B/metabolismo , Penaeidae/metabolismo , Penaeidae/microbiologia , Penaeidae/virologia , Análise de Sequência de DNA
7.
Fish Shellfish Immunol ; 42(2): 335-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463289

RESUMO

Humoral innate immune response against pathogenic infection is partly responsible by the Imd pathway in which a transcription factor Relish relays the infection signals to the nuclei for the expression of antimicrobial proteins. A PmRelish gene which encoded a protein of 1195 amino acids was cloned. The PmRelish was constitutively expressed in all tissues tested and mostly up-regulated upon YHV infection. In hemocytes, the PmRelish expression was up-regulated upon Vibrio harveyi, yellow head virus (YHV) and white spot syndrome virus (WSSV) challenges. Using dsRNA silencing of PmRelish gene, it was shown that the expression of penaeidin5 but not anti-lipopolysaccharide factor ALFPm3, crustinPm1 and penaeidin3 was under the regulation of Imd pathway. Under PmRelish silencing, the shrimp were more susceptible to infection by YHV with the 50% survival rate reduced from about 72 h to 42 h. The PmRelish was detected in the cytoplasm of all the hemocytes from both uninfected and YHV-infected shrimp. The accumulation of activated PmRelish in the nuclei was not clearly observed but the activated PmRelish was detected in the YHV-infected hemocytes by Western blot analysis. Thus, the PmRelish and, hence, the Imd pathway respond to the YHV infection.


Assuntos
Proteínas de Artrópodes/genética , Penaeidae/genética , Penaeidae/virologia , Roniviridae/fisiologia , Vibrio/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Western Blotting , Hemócitos/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Penaeidae/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Fatores de Transcrição
8.
Fish Shellfish Immunol ; 41(2): 526-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25301720

RESUMO

A 5-domain Kazal type serine proteinase inhibitor SPIPm2 from Penaeus monodon is involved in innate immune defense against white spot syndrome virus (WSSV). To test which domains were involved, the 5 domains of SPIPm2 were over-expressed and tested against WSSV infection. By using hemocyte primary cell culture treated with each recombinant SPIPm2 domain along with WSSV, the expression of WSSV early genes ie1, WSV477 and late gene VP28 were substantially reduced as compared to other domains when the recombinant domain 2, rSPIPm2D2, was used. Injecting the WSSV along with rSPIPm2D2 but not with other domains caused delay in mortality rate of the infected shrimp. The results indicate that the SPIPm2D2 possesses strong antiviral activity and, hence, contributes predominantly to the antiviral activity of SPIPm2.


Assuntos
Regulação Viral da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/imunologia , Penaeidae/imunologia , Penaeidae/virologia , Inibidores de Serino Proteinase/farmacologia , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Células Cultivadas , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Hemócitos/metabolismo , Imunidade Inata/genética , Dados de Sequência Molecular , Penaeidae/genética , Estrutura Terciária de Proteína , Inibidores de Serino Proteinase/genética
9.
Dev Comp Immunol ; 47(1): 95-103, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25016236

RESUMO

An antimicrobial protein, crustin, is involved in the innate immunity of crustacean by defending the host directly against the microbial pathogens. By data mining the Penaeus monodon EST database, two type I crustins, carcininPm1 and 2, and ten type II crustins, crustinPm1-10, were identified. The abundant crustins were crustinPm1, 4 and 7, each with variation in the length of Gly-rich repeat among its members. A few crustinPm1, 4 and 7 with deletion in the Cys-rich region were also observed. Furthermore, the crustinPm4 with the longest N-terminal Gly-rich region was characterized. The crustinPm4 allelic genes were expressed mainly from the hemocytes. Its expression was up-regulated readily by WSSV infection and gradually decreased to normal level afterwards. The recombinant crustinPm4-1 (rcrustinPm4-1) isoform was produced using the Escherichia coli expression system and tested for its antimicrobial activity. The rcrustinPm4-1 was able to inhibit the growth of a Gram-positive bacterium, Bacillus megaterium but not Bacillus subtilis, Micrococcus luteus and Staphylococcus aureus. It also inhibited the growth of two Gram-negative bacteria, E. coli 363 and Vibrio harveyi 639 at lower potency. The rcrustinPm4-1 affected the WSSV infection because the expression of an intermediate early gene ie1 in WSSV-infected hemocyte cell culture was reduced. It was shown further that the rcrustinPm4-1 could delay by about one and a half days the manifestation of disease by WSSV.


Assuntos
Proteínas de Artrópodes/imunologia , Penaeidae/química , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Células Cultivadas , Variação Genética , Hemócitos/imunologia , Dados de Sequência Molecular , Penaeidae/microbiologia , Penaeidae/virologia , Alinhamento de Sequência
10.
Dev Comp Immunol ; 34(10): 1101-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20540960

RESUMO

A five-domain Kazal-type serine proteinase inhibitor, SPIPm2, from Penaeus monodon has recently been implicated in antiviral responses for it is up-regulated upon viral infection and needs further studies. The SPIPm2 genomic gene was composed of seven exons and six introns. The genomic DNA segments coding for each Kazal domain were separated by introns of variable lengths supporting the hypothesis of gene duplication in the Kazal-type gene family. RT-PCR and Western blot analysis revealed that the SPIPm2 transcript and its five-domain protein product were expressed mainly in the hemocytes and less in gill, heart and antennal gland. Upon white spot syndrome virus (WSSV) infection, the SPIPm2 was only detected in the hemocytes and plasma. Immunocytochemical study of P. monodon hemocytes showed that the percentage of SPIPm2-producing hemocytes was reduced by about half after WSSV infection. Quantitative RT-PCR revealed further that the SPIPm2 was up-regulated early in the hemocytes of WSSV-infected shrimp and gradually reduced as the infection progressed. Injection of the recombinant SPIPm2 (rSPIPm2) prior to WSSV injection resulted in a significant inhibition of WSSV replication. The rSPIPm2 injection also prolonged the mortality rate of WSSV-infected shrimp. Therefore, the SPIPm2 was involved in the innate immunity against WSSV infection in shrimp.


Assuntos
Infecções por Vírus de DNA/imunologia , Hemócitos/metabolismo , Penaeidae , Proteínas Recombinantes/biossíntese , Inibidores de Serino Proteinase/biossíntese , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/metabolismo , Éxons/genética , Perfilação da Expressão Gênica , Hemócitos/imunologia , Hemócitos/patologia , Hemócitos/virologia , Imunidade Inata/efeitos dos fármacos , Imuno-Histoquímica , Íntrons/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Inibidores de Serino Proteinase/administração & dosagem , Inibidores de Serino Proteinase/genética , Replicação Viral/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/patogenicidade
11.
Fish Shellfish Immunol ; 27(2): 266-74, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19497371

RESUMO

Serine proteinase inhibitors (SPIs) play important roles in physiological and immunological processes involving proteinases in all multicellular organisms. In black tiger shrimp Penaeus monodon, nine different Kazal-type SPIs, namely SPIPm1-9, were identified from the cDNA libraries of hemocyte, hepatopancreas, hematopoietic tissue, ovary and lymphoid organ. They are multi-domain SPIs containing 2-7 and possibly more Kazal domains. Two interesting cDNA clones, SPIPm4 and SPIPm5 coding for two-domain Kazal-type SPIs, were identified from the heat-treated hemocyte cDNA libraries. The SPIPm4 and SPIPm5 consist of open reading frames of 387 and 399 bp coding for polypeptides of 128 and 132 amino acids with putative signal peptides of 21 and 19 amino acid residues and mature SPIs of 107 and 113 amino acid residues, respectively. Recombinant expression in an Escherichia coli expression system yielded recombinant proteins, rSPIPm4 and rSPIPm5, with molecular masses of 12.862 and 13.433 kDa, respectively. The inhibitory activities of SPIPm4 and SPIPm5 were tested against trypsin, chymotrypsin, subtilisin and elastase. The SPIPm4 exhibited potent inhibitory activity against subtilisin and weakly against chymotrypsin whereas the SPIPm5 strongly inhibited subtilisin and elastase. The inhibition was a competitive type with inhibition constants (K(i)) of 14.95 nM for SPIPm4 against subtilisin, 4.19 and 59.64 nM, respectively, for SPIPm5 against subtilisin and elastase. They had no bacteriostatic effect against Gram-positive bacteria: Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, and Gram-negative bacteria: Vibrio harveyi 639, E. coli JM109. Gene expression study revealed that the SPIPm5 gene was up-regulated in response to heat treatment suggesting the involvement of SPIs in stress responses.


Assuntos
Bactérias/efeitos dos fármacos , Penaeidae/metabolismo , Inibidores de Serino Proteinase/genética , Inibidores de Serino Proteinase/farmacologia , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidores de Serino Proteinase/química , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...